Home > vbmeg > functions > leadfield > sphere > vb_sarvas_new.m

vb_sarvas_new

PURPOSE ^

B = vb_sarvas_new(P, Q, R, S)

SYNOPSIS ^

function B = vb_sarvas_new(P, Q, R, S)

DESCRIPTION ^

 B = vb_sarvas_new(P, Q, R, S)
 Magnetic field for multiple dipoles at a single MEG sensor
     in spherical brain model (Sarvas Eq.)

 INPUT
   Dipole current source
   P : current dipole position   ( NP x 3 )
   Q : current dipole moment     ( NP x 3 )
   MEG sensor
   R : one of sensor position    ( 1 x 3 ) or ( 3 x 1 )
   S : its sensor orientation    ( 1 x 3 ) or ( 3 x 1 )
 OUTPUT
   B : Lead field matrix         ( NP x 1 )

 Copyright (C) 2011, ATR All Rights Reserved.
 License : New BSD License(see VBMEG_LICENSE.txt)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function    B = vb_sarvas_new(P, Q, R, S)
0002 % B = vb_sarvas_new(P, Q, R, S)
0003 % Magnetic field for multiple dipoles at a single MEG sensor
0004 %     in spherical brain model (Sarvas Eq.)
0005 %
0006 % INPUT
0007 %   Dipole current source
0008 %   P : current dipole position   ( NP x 3 )
0009 %   Q : current dipole moment     ( NP x 3 )
0010 %   MEG sensor
0011 %   R : one of sensor position    ( 1 x 3 ) or ( 3 x 1 )
0012 %   S : its sensor orientation    ( 1 x 3 ) or ( 3 x 1 )
0013 % OUTPUT
0014 %   B : Lead field matrix         ( NP x 1 )
0015 %
0016 % Copyright (C) 2011, ATR All Rights Reserved.
0017 % License : New BSD License(see VBMEG_LICENSE.txt)
0018 
0019 %   NP : # of dipole points
0020 %
0021 %  2004-12-15 Made by M. Sato
0022 
0023 % Dipole position vector
0024 P1 = P(:,1);
0025 P2 = P(:,2);
0026 P3 = P(:,3);
0027 
0028 % Dipole moment vector
0029 Q1 = Q(:,1);
0030 Q2 = Q(:,2);
0031 Q3 = Q(:,3);
0032 
0033 % Sensor position vector
0034 R  = R(:);
0035 R1 = R(1);
0036 R2 = R(2);
0037 R3 = R(3);
0038 
0039 % Sensor orientation vector
0040 S  = S(:);
0041 
0042 % Difference from dipole to sensor : (NP x 3)
0043 dP = [(R1-P1), (R2-P2), (R3-P3)];
0044 
0045 % Square norm    :  (NP x 1)
0046 dd = sum(dP.^2, 2);
0047 d  = sqrt(dd);
0048 rr = sum(R.^2);
0049 r  = sqrt(rr);
0050 
0051 % Inner product  : (NP x 3) * ( 3 x 1 ) = (NP x 1)
0052 dr = dP*R;
0053 pr =  P*R;
0054 
0055 % Cross product (Q x P) : (NP x 3)
0056 QP = [Q2.*P3-Q3.*P2, ...
0057       Q3.*P1-Q1.*P3, ...
0058       Q1.*P2-Q2.*P1  ];
0059 
0060 % Denominator of magnetic potencial
0061 f  = dd .* r + d .* dr ;
0062 
0063 % ( Gradient of 'f' ) * S
0064 df = (d + dd./r).* (R'*S)  + ( d + 2*r + dr./d ).* (dP*S);
0065 
0066 % Magnetic field for sensor orientation vector 'S'
0067 B  = (QP*S)./f - (QP*R).*df./(f.^2);
0068 B  = (10^-7) * B;
0069 
0070 return
0071 % END of program
0072 
0073 %% Execution speed comparison with repmat
0074 %  Time
0075 %  0.23   dP = [(R1-P1), (R2-P2), (R3-P3)];
0076 %
0077 %% This code is faster than the following repmat code for large data
0078 %% since no memory allocation is needed
0079 % ( R1, R2, R3 are scalars)
0080 %
0081 %  0.36   R  = repmat(R',[size(P,1) 1]);
0082 %  0.17   dP = R - P;

Generated on Mon 22-May-2023 06:53:56 by m2html © 2005