0001 function vb_test_gave5
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 sbj_id = {'0001','0002','0003','0004'};
0023 cond_id = {'LR'};
0024
0025
0026
0027
0028
0029 bayes_parm.noise_model = 3;
0030 bayes_parm.noise_reg = 0.1;
0031
0032
0033
0034
0035
0036 bayes_parm.forward_model = 'focal';
0037 bayes_parm.area_key = 'Cortex';
0038 bayes_parm.reduce = 0.5;
0039 bayes_parm.Rfilt = 0.5*8e-3/sqrt(log(2));
0040 bayes_parm.area_key_global = 'Cortex';
0041 bayes_parm.reduce_global = bayes_parm.reduce;
0042 bayes_parm.Rfilt_global = bayes_parm.Rfilt;
0043 bayes_parm.patch_norm = false;
0044 bayes_parm.expand_spatial_filter = true;
0045 bayes_parm.remove_crossed_area = false;
0046
0047
0048
0049
0050
0051 bayes_parm.v0 = 0.01;
0052 bayes_parm.Tv0 = 0;
0053
0054
0055
0056
0057
0058 bayes_parm.extra = [];
0059
0060
0061
0062
0063
0064 bayes_parm.Ntrain = 1000;
0065 bayes_parm.Npre_train = 1000;
0066 bayes_parm.skip = 50;
0067 bayes_parm.update_sx = true;
0068 bayes_parm.update_v = true;
0069 bayes_parm.Fdmin = 1e-50;
0070 bayes_parm.a_min = 1e-6;
0071 bayes_parm.a_max = 1e6;
0072 bayes_parm.cont_pr = false;
0073
0074
0075
0076
0077
0078 bayes_parm.soft_mode = false;
0079 bayes_parm.variance_orientation = false;
0080 bayes_parm.var_max = 1/sqrt(2);
0081 bayes_parm.tan_var = 1.0;
0082 bayes_parm.cosval = cos(pi);
0083
0084
0085
0086
0087
0088 for j=1:length(cond_id)
0089
0090 switch cond_id{j}
0091 case {'LR'},
0092 bayes_parm.a0 = 1;
0093 bayes_parm.a0_act = 500;
0094 bayes_parm.Ta0 = 500;
0095 bayes_parm.Ta0_act = 500;
0096
0097 bayes_parm.twin_noise = [1 500];
0098 bayes_parm.twin_baseline = [1 500];
0099 bayes_parm.twin_meg = [1 1000];
0100 bayes_parm.Tperiod = 1000;
0101 bayes_parm.Tnext = 1000;
0102 end;
0103
0104 for i=1:length(sbj_id)
0105
0106 proj_root = ['./subjects' filesep sbj_id{i} filesep];
0107 bayes_parm.brainfile ...
0108 = [proj_root 'brain' filesep sbj_id{i} '.brain.mat'];
0109 bayes_parm.areafile ...
0110 = [proj_root 'brain' filesep sbj_id{i} '.area.mat'];
0111 bayes_parm.actfile ...
0112 = [proj_root 'brain' filesep sbj_id{i} '.act.mat'];
0113
0114
0115 bayes_parm.act_key = [sbj_id{i} '_' cond_id{j}];
0116 bayes_parm.basisfile ...
0117 = [proj_root 'basis' filesep sbj_id{i} '_' cond_id{j} '.basis.mat'];
0118 bayes_parm.megfile ...
0119 = {[proj_root 'meg' filesep sbj_id{i} '_' cond_id{j} '.meg.mat']};
0120 bayes_parm.basisfile_global = bayes_parm.basisfile;
0121 bayes_parm.megfile_baseline = bayes_parm.megfile;
0122 bayes_parm.bayesfile ...
0123 = [proj_root 'result' filesep sbj_id{i} '_' cond_id{j} ...
0124 '.bayes.mat'];
0125
0126
0127 vb_job_vb(proj_root,bayes_parm);
0128 end;
0129 end;
0130
0131 return;